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1 Matrix as Linear Map
The concept of matrix is closely related to linear maps between vector spaces – actually, they are two sides 

of the same coin. In this section, we will explore this relationship in detail.

Let’s first think about a linear map 𝒯︀ from a m-dimensional vector space 𝑉  to an n-dimensional vector space 

𝑊 . We can choose a basis {𝑣1, 𝑣2, …, 𝑣𝑚} for 𝑉  and a basis {𝑤1, 𝑤2, …, 𝑤𝑛} for 𝑊 . For each basis vector 𝑣𝑗 

in 𝑉 , the image under the linear map 𝒯︀ can be expressed as a linear combination of the basis vectors in 𝑊 :

𝒯︀𝑣𝑗 = ∑
𝑛

𝑖=0
𝐴𝑖,𝑗𝑤𝑖

Once all the 𝑚2 coeffficients 𝐴𝑖,𝑗 are given, we have the full information of the linear map 𝒯︀ since any vector 

𝑣 ∈ 𝑉  can be expressed as a linear combination of the basis vectors thus its image 𝒯︀𝑣 can be computed 

accordingly. Now we randomly pick a vector 𝑣 ∈ 𝑉 :

𝑣 = ∑
𝑚

𝑗=0
𝑥𝑗𝑣𝑗

where 𝑥𝑗 are the coordinates of the vector 𝑣 in the basis {𝑣1, 𝑣2, …, 𝑣𝑚}. Now we can compute the image of 

𝑣 under the linear map 𝒯︀:

𝒯︀𝑣 = 𝒯︀(∑
𝑚

𝑗=0
𝑥𝑗𝑣𝑗) = ∑

𝑚

𝑗=0
𝑥𝑗𝒯︀𝑣𝑗 = ∑

𝑚

𝑗=0
𝑥𝑗(∑

𝑛

𝑖=0
𝐴𝑖,𝑗𝑤𝑖) = ∑

𝑛

𝑖=0
(∑

𝑚

𝑗=0
𝐴𝑖,𝑗𝑥𝑗)𝑤𝑖

Wait… What the heck is “coordinate”? Let’s take a step back. Rethink how we define coordinate of 2- and 3-

dimensional vectors in high-school level math. We pick three perpendicular axes 𝑥, 𝑦 and 𝑧 in the 3D space. 

Then any vector 𝑣 in this 3D space can be represented as a combination of these three axes:

𝑣 = 𝑣𝑥 ̂𝑖 + 𝑣𝑦 ̂𝑗 + 𝑣𝑧 𝑘̂

where ̂𝑖, ̂𝑗 and 𝑘̂ are unit vectors along the 𝑥, 𝑦 and 𝑧 axes respectively. The coefficients 𝑣𝑥, 𝑣𝑦  and 𝑣𝑧 are 

called the coordinates of the vector 𝑣 in this coordinate system. Similarly, in the general vector space 𝑉 , we 

pick a set of basis vectors {𝑣1, 𝑣2, …, 𝑣𝑚} to define a coordinate system. Any vector 𝑣 ∈ 𝑉  can be represented 

as a linear combination of these basis vectors, and the coefficients in this linear combination are called the 
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coordinates of the vector 𝑣 in this basis. Therefore, the coordinates 𝑥𝑗 in the expression 𝑣 = ∑𝑚
𝑗=0 𝑥𝑗𝑣𝑗 are 

the coordinates of the vector 𝑣 in the basis {𝑣1, 𝑣2, …, 𝑣𝑚}.

Similarly, (∑𝑚
𝑗=0 𝐴𝑖,𝑗𝑥𝑗) are the coordinates of the image vector 𝒯︀𝑣 in the basis {𝑤1, 𝑤2, …, 𝑤𝑛} of the vector 

space 𝑊 .

Now we can see the motivation behind the matrix-vector multiplication. Let’s consider the 𝑛 × 𝑚 matrix 𝑀(𝒯︀) 
corresponding (we don’t actually see why they are corresponding up to this point) to the linear map 𝒯︀:

𝑀(𝒯︀) =

[



𝐴1,1

𝐴2,1
⋮

𝐴𝑛,1

𝐴1,2
𝐴2,2

⋮
𝐴𝑛,2

…
…
⋱
…

𝐴1,𝑚
𝐴2,𝑚

⋮
𝐴𝑛,𝑚]






.

When we multiply this matrix 𝑀(𝒯︀) with the coordinates of 𝑣 in the basis {𝑣1, 𝑣2, …, 𝑣𝑚}, we get:

𝑀(𝒯︀)

[



𝑥1

𝑥2
…
𝑥𝑚]






=

[




∑𝑚

𝑗=0 𝐴1,𝑗𝑥𝑗

∑𝑚
𝑗=0 𝐴2,𝑗𝑥𝑗

…
∑𝑚

𝑗=0 𝐴𝑛,𝑗𝑥𝑗]






.

The left side is exactly the coordinates of the image vector 𝒯︀𝑣 in the basis {𝑤1, 𝑤2, …, 𝑤𝑛} of the vector 

space 𝑊 . Therefore, we can conclude that multiplying the matrix 𝑀(𝒯︀) with the coordinates of a vector 𝑣 
in the basis {𝑣1, 𝑣2, …, 𝑣𝑚} gives us the coordinates of the image vector 𝒯︀𝑣 in the basis {𝑤1, 𝑤2, …, 𝑤𝑛}. So 

matrix-vector multiplication is actually a way to compute the image of a vector under a linear map when we 

know the matrix corresponding to that linear map and the coordinates of the vector in a chosen basis.

This insight gives us a powerful tool to think about linear equation systems, transformations in geometry, and 

many other applications in various fields such as physics, computer science, and economics. Take homogeneous 

linear equation systems as an example. A homogeneous linear equation system can be represented as:

𝐴𝑣 = 0

where 𝐴 is a 𝑚 × 𝑛 matrix and 𝑣 is a n-dimensional vector. Once we view the matrix 𝐴 as corresponding 

matrix to a linear map 𝒜︀ from ℝ𝑛 to ℝ𝑚, under standard basis, this equation can be reinterpreted as finding 

the kernel (or null space) of the linear map 𝒜︀. The system has non-zero solutions iff the kernel of 𝒜︀ is non-

trivial. And we know that linear maps from a higher-dimensional space to a lower-dimensional space (i.e., 

𝑛 > 𝑚) must have a non-trivial kernel. Thus, we can conclude

Theorem 1.1 :  A homogeneous linear equation system 𝐴𝑣 = 0 has non-zero solutions iff the number of 

equations is less than the number of unknowns (i.e., the number of rows of 𝐴 is less than the number 

of columns of 𝐴).
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2 Matrix as Linear Combination
In the previous section, we have seen how matrix-vector multiplication can be understood as applying a linear 

map to a vector when we know the matrix corresponding to that linear map and the coordinates of the vector 

in a chosen basis. Now, let’s extend this idea to matrix-matrix multiplication.

First, let’s consider the matrix-vector multiplication example 𝐴𝑣 from previous section, but in now we see the 

n-dimensional vector 𝑣 as a 𝑛 × 1 matrix 𝑉 :

𝑣 =

[



𝑥1

𝑥2
⋮
𝑥𝑛]






.

Then the matrix-vector multiplication 𝐴𝑣 can be viewed as multiplying the 𝑚 × 𝑛 matrix 𝐴 with the 𝑛 × 1 

matrix 𝑣, resulting in a 𝑚 × 1 matrix. For each column of 𝐴, we may see it as a vector in ℝ𝑚. Thus, the 

multiplication 𝐴𝑣 can be interpreted as taking a linear combination of the columns of 𝐴, weighted by the 

entries of the matrix 𝑣. Specifically, if we denote the columns of 𝐴 as 𝐴,1, 𝐴,2, …, 𝐴,𝑛, then we have: 𝐴𝑣 =
𝑥1𝐴,1 + 𝑥2𝐴,2 + … + 𝑥𝑛𝐴,𝑛.

The same result holds when we multiply two general matrices. Let’s consider two matrices 𝐴 and 𝐵, where 𝐴 

is an 𝑚 × 𝑛 matrix and 𝐵 is an 𝑛 × 𝑝 matrix. The matrix-matrix multiplication 𝐴𝐵 results in an 𝑚 × 𝑝 matrix. 

Similar to the previous case, we can interpret this multiplication as taking linear combinations of the columns 

of 𝐴, weighted by the entries of the corresponding columns of 𝐵. Specifically, if we denote the columns 

of 𝐴 as 𝐴,1, 𝐴,2, …, 𝐴,𝑛 and the columns of 𝐵 as 𝐵,1, 𝐵,2, …, 𝐵,𝑝, then the resulting matrix 𝐶 = 𝐴𝐵 can be 

expressed as:

𝐶,𝑗 = 𝑏1,𝑗𝐴,1 + 𝑏2,𝑗𝐴,2 + … + 𝑏𝑛,𝑗𝐴,𝑛

for each column 𝐶,𝑗 of the resulting matrix 𝐶, where 𝑏𝑖,𝑗 are the entries of the matrix 𝐵.

This gives us a more clear way to understand the rank of a matrix and so called column-row factorization. 

Let’s define the rank of a matrix first.

Definition 2.1 :  The column rank of a matrix is defined as the maximum number of linearly independent 

column vectors in the matrix. In other words, it is the dimension of the column space of the matrix. 

Similarly, the row rank of a matrix is defined as the maximum number of linearly independent row vectors 

in the matrix. It is the dimension of the row space of the matrix.

Now we can give the theorem of column-row factorization.

Theorem 2.1 :  For any 𝑚 × 𝑛 matrix 𝐴 with column rank 𝑟, there exist an 𝑚 × 𝑟 matrix 𝐶 and a 𝑟 × 𝑛 

matrix 𝑅 such that 𝐴 = 𝐶𝑅.
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Proof : The proof is straightforward. The dimension of the column space of 𝐴 is 𝑟, so we can find a 

basis of 𝑟 column vectors {𝑐1, 𝑐2, …, 𝑐𝑟} that span the column space of 𝐴. We can form the matrix 𝐶 

by taking these basis vectors as its columns:

𝐶 = [𝑐1 𝑐2 … 𝑐𝑟].

Next, since each column of 𝐴 can be expressed as a linear combination of the basis vectors, we can find 

the coefficients for these linear combinations and form the matrix 𝑅 such that:

𝐴 = 𝐶𝑅.

□

We can use the column-row factorization to prove a basic property of matrix rank.

Theorem 2.2 :  The column rank and row rank of any matrix are equal.

Proof :  Let’s consider an 𝑚 × 𝑛 matrix 𝐴 with column rank 𝑟. According to the column-row factorization 

theorem, we can express 𝐴 as:

𝐴 = 𝐶𝑅

where 𝐶 is an 𝑚 × 𝑟 matrix and 𝑅 is a 𝑟 × 𝑛 matrix. The rows of 𝐴 are linear coombinations of the rows 

of 𝑅. Since 𝑅 has at most 𝑟 linearly independent rows, the row rank of 𝐴 cannot exceed 𝑟. So we have 

the row rank of 𝐴 less than or equal to its column rank. This holds for any matrix, including 𝐴𝑇 . And 

we know that

row rank 𝐴𝑇 = column rank 𝐴
≤ column rank 𝐴𝑇

= row rank 𝐴.

Therefore, the column rank and row rank of any matrix are equal. □

So we don’t need to distinguish column rank and row rank anymore. We can simply refer to them as the rank 

of a matrix. Now let’s get back to the homogeneous linear equation system 𝐴𝑣 = 0. We have shown that 

this system has non-zero solutions iff the number of equations is less than the number of unknowns. We can 

restate this result in terms of matrix rank.

Theorem 2.3 :  A homogeneous linear equation system 𝐴𝑣 = 0 has non-zero solutions iff the rank of the 

matrix 𝐴 is less than the number of columns of 𝐴.

Proof :  The rank of matrix 𝐴 is less than the number of columns of 𝐴, thus the column vectors of 𝐴 

are linearly dependent. Therefore, there exists {𝑣1, 𝑣2, …, 𝑣𝑛}, not all zero, such that 𝑣1𝐴,1 + 𝑣2𝐴,2 +
… + 𝑣𝑛𝐴,𝑛 = 0. Let 𝑣 = [𝑣1, 𝑣2, …, 𝑣𝑛]𝑇 . Then we have 𝐴𝑣 = 0.

4



xiaohe

Conversely, if there exists a non-zero vector 𝑣 such that 𝐴𝑣 = 0, then the column vectors of 𝐴 are 

linearly dependent, which implies that the rank of 𝐴 is less than the number of columns of 𝐴. □
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